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FLASH radiotherapy holds promise for treating solid tumors given the
potential lower toxicity in normal tissues but its therapeutic effects on tumor
immunity remain largely unknown. Using a genetically engineered mouse
model of medulloblastoma, we show that FLASH radiation stimulates proin-

flammatory polarization in tumor macrophages. Single-cell transcriptome
analysis shows that FLASH proton beam radiation skews macrophages
toward proinflammatory phenotypes and increases T cell infiltration.
Furthermore, FLASH radiation reduces peroxisome proliferator-activated
receptor-y (PPARy) and arginase 1 expression and inhibits immunosupp-
ressive macrophage polarization under stimulus-inducible conditions.
Mechanistically, FLASH radiation abrogates lipid oxidase expression

and oxidized low-density lipid generation to reduce PPARy activity, while
standard radiation induces reactive oxygen species-dependent PPARy
activationin macrophages. Notably, FLASH radiotherapy improves
infiltration and activation of chimeric antigen receptor (CAR) T cells and
sensitizes medulloblastomato GD2 CAR-T cell therapy. Thus, FLASH
radiotherapy reprograms macrophage lipid metabolism to reverse tumor
immunosuppression. Combination FLASH-CAR radioimmunotherapy may
offer exciting opportunities for solid tumor treatment.

Childhood canceris aleading cause of death in children. Among these,
medulloblastoma (MB) is the most frequently occurring malignant
brain tumor in children’. Despite aggressive treatments involving
surgical resection, standard ionizing irradiation and chemotherapy,
the prognosis for persons with high-risk MB remains poor’. Immu-
notherapy holds great promise in improving brain cancer outcomes;
however, currentimmunotherapy methods, which primarily focus on
Tcelluse oractivation, face notable challenges intreating brain tumors.
These challenges arise mainly from animmune-hostile microenviron-
ment that hinders T cell infiltration and activation within the tumors.
Because of theirimmunologically inert characteristics, most brain
tumorsdisplay resistance to T cell-based immunotherapies, including
checkpointblockade and adoptive cell transfer using chimeric antigen

receptor (CAR)-modified T cells®®. Inbrain tumors, the primary source
of immunosuppression originates from tumor-associated myeloid
cells, particularly macrophages (M¢s) that constitute the majority of
non-neoplastic cells”®. Tumor-associated M¢s usually undergo alter-
native M2 polarization and secrete immunosuppressive factors, such
as interleukin 10 (IL-10), transforming growth factor-p (TGFf) and
arginase 1, to induce tumor immunosuppression’ ™. Consequently,
the development of promising approaches that reprogram Mds to
overcome tumor resistance toimmunotherapy is critically needed for
the treatment of pediatric brain tumors.

Radiotherapy (RT) hasbeengenerally considered as an‘insitu vac-
cination’ treatment to stimulate antitumor immunity as it causes tumor
cell lysis to release tumor-specific antigens that can be recognized
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by immune cells'®. However, the impact of standard radiation on M¢
phenotypes appears to be conflicting, depending on dose, location
and cancer types” >, posing challenges for combining immuno-
therapy with standard RT. Notably, growing evidence suggests that
ultrahigh-dose-rate delivery of radiation (that is, FLASH RT at a dose
rate of >40 Gy s™') can improve the therapeutic ratio of radiation and
reduce normal tissue toxicity** . Considering the crucialimportance
of preserving normal brain functions and neurocognitive benefits®,
FLASH RT holds great promise for treating the pediatric population
with brain tumors. Here, we sought to investigate the therapeutic
effects of FLASH RT on MB immunity and the underlying regulatory
mechanismthrough single-cell and bulk transcriptome analyses. Our
data show that FLASH RT stimulates proinflammatory M¢ pheno-
types in vitro and in vivo through regulating reactive oxygen spe-
cies (ROS)-dependent peroxisome proliferator-activated receptor-y
(PPARYy) activation. Strikingly, FLASH RT robustly improves CAR-T cell
infiltrationinto MB tumors. Our study suggests that combined FLASH
and CAR-T radioimmunotherapy is a promising strategy for treating
pediatric brain tumors.

Results

Standard and FLASH RT improves survival in MB-bearing mice
Toexplorethe effects of radiation in MB, we took advantage of a geneti-
cally engineered mouse MB model, based on Mathl-Cre-driven specific
overexpression of Smo"*** (that is, SmoM2) in cerebellar granule cell
neuron precursorsinthe hind brain (Fig. 1a). This model recapitulates
the key features of the human sonic hedgehog type of MB, the most
common subtypeinyoung childrenunder 3 years of age. Using a small
animal radiation research platform incorporating high-resolution
computed tomography, we were able to stereotactically deliver pro-
ton beams into mouse MB tumors at a standard (0.7 Gy s™) or FLASH
(-100 Gy s™) dose rate (Fig.1a). Our results show that 10-Gy FLASH and
standard RT significantly (P < 0.05) and equivalently extended animal
survival by ~50%, providing comparable tumor control (Fig. 1b).

FLASH RT stimulates antitumor immunity in MB

We next analyzed theimpact of RT onglobal transcriptome in different
cellpopulations using single-cell RNA sequencing (RNAseq). Nonlinear
dimensionality reduction by uniform manifold approximation and
projection (UMAP) analysis of the whole transcriptome gene signature
assigned the single cellsinto several transcriptionally distinct cell clus-
ters, including tumor cells, endothelial cells, oligodendrocytes/astro-
cytesand microglia/leukocytes (Fig.1c,d). Interestingly, transcriptome
analysis revealed that the top genes upregulated in FLASH-irradiated
tumors included CD8a, a marker of cytotoxic T cells, and CD80 and
CD86, two costimulatory receptors that are critical for T cell-activating
responses in myeloid cells (Fig. 1e), suggesting a potential antitumor
proinflammatory effect by FLASH RT. Consistent with these findings,
analysis of CD11b" myeloid cells showed that FLASH RT induced more
robust expression of CD86 and CD80 and less expression of CD206,
a surface marker of immunosuppressive myeloid cells (Fig. 1f). Fur-
ther analysis of these CD11b" myeloid cellsidentified Argl (arginase 1)
among the most downregulated genes in FLASH-irradiated tumors
(Fig.1g,h). Arglisaknownimmunosuppressant thatinhibits T cell activ-
ity in tumors®. To validate these results, we performed flow cytometry
analysis of tumor-derived single-cell suspensions. Our results showed
that FLASH enhanced the infiltration of total CD45" hematopoietic cells
(Fig.liand Extended DataFig.1a). Interestingly, FLASH RT increased the
proinflammatory M1-like CD86*M¢ population (Fig. 1j) and decreased
anti-inflammatory M2-like CD206* M@ population (Fig. 1k) compared to
the no RT condition, while standard RT did not robustly affect these Mg
populations, suggesting that FLASH RT stimulates a more proinflam-
matory response in tumor Mgs. In addition, flow cytometry analysis
showed that FLASH or standard RT did not affect the population of
total Ms or total and M1-like microglia cells (Extended Data Fig. 1b,c)

and only FLASH RT reduced the population of M2-like microglia cells
(Extended Data Fig. 1d). In accordance with these findings, FLASH RT
enhanced theinfiltration of CD3" T cellsinto the tumors (Fig. 11). Moreo-
ver, FLASH RT increased the percentage of CD8" T cells in total T cells
and theratio of CD8'to CD4" T cells (Fig. 1m-o0). FLASH and standard RT
slightly yetinsignificantly (P> 0.05)i sed theinfiltration of natural
killer (NK) cells (Extended Data Fig. 1 kentogether, these findings
indicate that FLASH RT induces more favorable immune responses in
MB compared to standard RT.

FLASH RT induces proinflammatory M¢ phenotypes in vitro

We next investigated the effects of radiation on M¢ polarization, a
key cellular process that regulates Mg function and immunosuppres-
sion. Mouse bone marrow (BM)-derived M¢s wereirradiated by a5-Gy
standard and FLASH proton beam, followed by M1-like and M2-like
inductionwith lipopolysaccharide (LPS) and IL-4, respectively (Fig. 2a).
Interestingly, FLASH RT enhanced the population of CD80" proinflam-
matory M¢s under the M1 condition (Fig. 2b). Reverse transcription
(RT)-PCR analysis verified that FLASH RT enhanced the expression
of proinflammatory IL-1B, while standard RT reduced its expression
(Fig.2c).Similar results were observed inirradiated human peripheral
blood mononuclear cell (PBMC)-derived Mq)ﬁnded DataFig.2).In
accordance with these data, ELISA assays sho atFLASHRT but not
standard RT enhanced the expression of proinflammatory cytokines
including IL-1B and tumor necrosis factor (TNF) in these M1-like M¢s
(Fig. 2d,e). Furthermore, FLASH or standard RT did not significantly
(P> 0.05) affect the population of anti-inflammatory CD206" M¢s
(Fig. 2f). However, FLASH but not standard RT reduced the expression
of immunosuppressive arginase 1 (Fig. 2g). To test the effect of RT on
M@ effector functions, control orirradiated M¢s were incubated with
human T cells, followed by flow cytometry analysis for T cell prolif-
eration and activation. Our data show that IL-4-treated M2-like M¢s
inhibited T cell proliferation and expression of CD25, a maker of T cell
activation (Extended Data Fig. 3). Importantly, FLASHRT but not stand-
ard RT rescued T cell proliferation (Extended Data Fig. 3a) and CD25
expression (Extended Data Fig. 3b) inthe T cells incubated with these
Maos. Together, these findings suggest that FLASH RT stimulates M¢s
toward proinflammatory M1 polarizationandleads to T cell activation.

FLASH RT induces less PPAR y expression and M¢ suppression
To investigate the mole mechanism by which FLASH and stand-
ard radiation modulatH function, we performed bulk RNAseq
analysis of irradiated M@s under control or M1-like or M2-like condi-
tion. Our transcriptome analysis showed that LPS and IL-4 markedly
switched global expression profile under unirradiated conditions
(Fig. 3a). LPS robustly upregulated expression of CD86, while IL-4
enhanced expression of CD206 (MrcI) and arginase 1 (Argl) (Fig. 3b).
Strikingly, radiation, particularly by standard RT, abrogated the
transcriptome shift induced by LPS and IL-4 (Fig. 3a). Consistent
with these findings, FLASH and standard RT seemed to evoke dif-
ferentimmune responses, as FLASH RT induced less expression of
immunosuppression-associated genes including Mrc1 and Argl and
also more expression ofimmunostimulation-associated genes, includ-
ing Cd86, I11b (IL-1B) and Tnf (TNF), particularly in the M1-stimulatory
condition (Fig. 3¢). In accordance with our results from in vitro flow
cytometry and RT-PCR analyses (Fig. 2), these findings collectively
suggest that FLASH RT may cause a transcriptomic change toward a
more proinflammatory and less anti-inflammatory status.

We explored the potential transcriptional regulation of M¢ func-
tionsinthese settings. We initially analyzed the expression of transcrip-
tion factors (TFs) that are known as regulators of immunosuppressive
M2 M@ polarization, including PPAR, Spil, Cebp, Stat6, KIf4, Irf8, Fos,
Jun and hypoxia-inducible factors HIF1a and HIF23 (EpasI). Notably,
PPARy wasidentified as the most robustly downregulated and upregu-
lated factor by LPS and IL-4, respectively, in our system, which led us
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Fig.1|FLASH RT shows antitumor effects and skews M¢s toward a
proinflammatory phenotypesin mouse MB. MB was genetically engineered in
SmoM2 mice, followed by irradiation with FLASH or standard proton beam.

a, Experimental procedure. b, After irradiation with a10-Gy proton beam, animal
survival was monitored (n = 11-14 mice; specific n value of each group listed in
the figure). Statistical analysis by log-
(pooled from n =3 mice for each group). ¢, UMAP analysis of transcriptome gene
signature in all tumor-derived cells. Left, integration of RNAseq data from samples
irradiated with FLASH or standard proton beam. Right, distribution of cell clusters.

rank test. c-h, Single-cell RNAseq analysis

d, UMAP analysis of transcriptome gene signature in microgliaand leukocytes.

e, Top regulated genes in microglia and leukocytes. FC, fold change. f, CD86, CD80,
CD163 and CD206 (Mrcl) expressionin CD11b* myeloid cells. g, Top altered genes
inCD11b* myeloid cells. h, Arginase 1 (ArgI) and MCP1(Ccl2) expressionin CD11b*
myeloid cells. i-o0, Flow cytometry analysis for CD45" hematopoietic cells (i), CD86*
Mi-like Mos (j) and CD206" M2-like Ms (k) in CD11b F4/80° M¢ps, CD45°CD3' T
cellsintotal cells (I) and CD4* (m) and CD8" (n) T cellsin CD45°CD3* T cells and ratio
of CD8'/CD4" T cells (0) (n = 5 mice, mean + s.e.m.). Statistical analysis by one-way
ANOVA. i, Left, representative cell sortings. Right, quantified results.
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Fig. 2| FLASH radiation stimulates the capacity for stimulus-dependent
proinflammatory polarization in M¢s. Mouse BM-derived M¢s were irradiated
with FLASH or standard proton beam, followed by treatment with LPS or IL-4.

a, Experimental procedure. b-e, After treatment with LPS, cells were analyzed by
flow cytometry (b), RT-PCR (c) or ELISA (d,e). b, Left, representative cell sortings.
Right, quantified results (n =3 mice, mean + s.e.m.). ¢, Quantified results of
RT-PCR (n=3mice, mean +s.e.m.).d, ELISAresults for IL-1B expression (n =9 mice,

mean +s.e.m.). e, ELISA results for TNF expression (n =9 mice, mean +s.e.m.).
b-e, Statistical analysis by one-way ANOVA.f,g, After treatment with IL-4, cells
were analyzed by flow cytometry (f) and RT-PCR (g). f, Left, representative cell
sortings. Right, quantified results (n = 3 mice, mean + s.e.m.). Statistical analysis
by one-way ANOVA. g, Quantified results of RT-PCR (n = 3 mice, mean + s.e.m.).
Statistical analysis by two-tailed Student’s ¢-test.

to focus our next study on PPARy (Fig. 3d). Compared to standard RT
(+51.1%, versus unirradiated cells), FLASH RT induced substantially less
expression of PPARy (+1.8%, versus unirradiated cells) but not PPARa
or PPARS in M¢s under the M1 condition (Fig. 3e). Likewise, FLASH
RT inhibited M2 condition-inducible expression of arginase 1in M¢s
(Fig. 3f). Considering a well-established role of PPARy and arginase 1
for immunosuppressive polarization of tumor M¢s*, these findings
suggest that FLASH RT may inhibit PPARy expression to drive less
immune-inhibitory and more immune-stimulative phenotypes in Ms.

FLASH RT inhibits oxidized low-density lipoprotein (oxLDL)
generation to reduce PPARYy activity

To define the mechanism underlying FLASH RT-induced down-
regulation of PPARYy, we initially tested its effects on ROS genera-
tion. Our results showed that FLASH RT did not induce a detectable

increase in ROS production in mouse Ms, while standard RT evoked
atime-dependent ROS generation, peaking at 12 h after irradiation
(Fig.4a). Consistent with this result, FLASHRT induced lessROS genera-
tionin human PBMC-derived M¢ps compared to standard RT (Extended
DataFig.4a). Moreover, FLASHRT inhibited PPARy activity but standard
RT increased its activity in mouse Ms (Fig. 4b). Similar results were
observed inirradiated human Ms (Extended Data Fig. 4b). Impor-
tantly, pretreatment of M¢s with ROS scavenger TEMPO abrogated
standard RT-induced PPARy activation (Fig. 4c), indicating that stand-
ard RT stimulates PPARy activation through ROS. Likewise, scavenging
ROS reduced arginase 1 expression in both nonirradiated and irradi-
ated cells, suggesting arequisite role for ROS in arginase 1 expression
(Fig. 4d). Together, these findings suggest that FLASH RT does not
affect ROS production but inhibits PPARy activity and standard RT
stimulates ROS-dependent PPARy activation and arginase 1 expression.
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Fig. 3| FLASH radiation induces less PPARy expression and
immunosuppressive phenotypes in M¢s. Mouse BM-derived M¢s were
irradiated with 5-Gy FLASH or standard proton beam, followed by treated

with LPS (M1) or IL-4 (M2). a-e, RNA was extracted and analyzed by RNAseq
(n=3samples per group, pooled from three mice). a, Principal component
analysis of all of the mapped genes. b, Expression of M1and M2 marker genesin
unirradiated Ms treated with or without LPS or IL-4 (mean + s.e.m.). Statistical
analysis by two-way ANOVA. ¢, Expression of immunosuppression-associated
and proinflammation-associated genesinirradiated M1or M2 Mos. Left, heat

map of gene expression. Right, quantified changes over unirradiated cells
(average percentage change). d, Expression of M2 polarization-associated TFsin
unirradiated Ms treated with or without LPS or IL-4 (mean + s.e.m.). Statistical
analysis by one-way ANOVA. e, Expression of PPAR TFs inirradiated control, M1
Maos or M2 Mos. Left, heat map of gene expression. Right, quantified changes
over unirradiated cells (average percentage change). f, Treated cells were
analyzed by immunoblot. This experiment was repeated independently twice
with similar results.

We next explored a potential role of oxLDL that contains oxidized
lipids known to activate PPARy*** data showed that FLASH RT
inhibited oxLDL generation but s ard RT enhanced it in mouse
Mds (Fig. 4e). Similar results were observed in irradiated human
Maos (Ext Data Fig. 4c). Production of oxLDL proceeds through
ROS-medi irectreactionandlipid oxidasesincluding nicotinamide
adenine dinucleotide phosphate oxidase (Nox), lipoxygenase (Lox) and
myeloperoxidase (Mpo). Notably, both FLASH and standard RT mark-
edly inhibited M expression of two major lipid oxidases, Alox12 and
Mpo, as well as AloxS5 to a lesser extent, as revealed by RNAseq analysis
(Fig.4f). RT-PCRanalysis confirmed that FLASH and standard RT abro-
gated Mpo mRNA expression (Fig. 4g). This is likely because of aglobal
altered activation of multiple TFs (Extended Data Fig. 5). Furthermore,

pretreatment of M¢s with ROS scavenger TEMPO inhibited standard
RT-stimulated oxLDL production (Fig. 4h). These findings collectively
suggest that FLASH radiation may reduce PPARy activity through down-
regulation of oxidase expression, while standard radiation may enhance
PPARYy activation through ROS in Ms.

FLASH RT sensitizes tumors to GD2 CAR-T cell therapy

Because FLASH RT stimulates proinflammatory polarization in M¢s
invitro andin vivo (Figs. 1-3) and enhances T cell infiltration into MB
tumors invivo (Fig. 1), we hypothesize that FLASH RT may sensitize
braintumorsto T cell-basedimmunotherapy. To test this hypothesis, we
aimed to develop immunotherapy using CAR-engineered mouse T cells
that specifically target GD2, a well-known target for brain tumors®**,
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(mean ts.e.m., n =4 mice). Statistical analysis by two-way ANOVA.d, Cell lysate
was immunoblotted. This experiment was repeated independently twice with

C

1.5 o |

© 20
~ 1 o 8 1)
) 3 @ s}
Q_ﬁ/ S < 0 O o
> 1 W © $ 8 !
ES aq © o g * © Control
o )

2 ] cH> o
5 [0} a o o © TEMPO
& 054 ® 5| ©DMTU
= o &
o b o

o a

T
Standard
RT

T
FLASH
RT

o Z
— 0

NoRT 1 @& :ﬁ\
FLASH RT +_P=0.0026 @Q

Standard RT 4_P=0.0131 Po-
T ‘ T ‘ T ‘
0 50 100 150
oXxLDL (% of no RT)
9 h O Control
@ TEMPO
© DMTU
o]
_ 8 F@; S
Ee] = 8 &
S 24| 89 o 32
~ o a (3] ] W
5 S sg M-
‘@ o v O I §
@ = s a a o
2 * =) o
g s & e/
) W 140 &
g =5
= o
A
& 0

T 1
FLASH
RT

No
RT

Standard
RT

similar results. e-g, Mouse M¢s were irradiated with 5-Gy FLASH or standard
radiation. e, Cell lysates were subject to oxLDL analysis (mean + s.e.m., n=7 mice,
pooled from two experiments). Statistical analysis by one-way ANOVA. f, RNA was
extracted and analyzed by RNAseq (n = 3 samples, pooled from three mice; total
of 27 mice). Left, heat map of oxidase gene expression. Right, quantified results.
Statistical analysis by two-way ANOVA. g, RNA was extracted and analyzed by
RT-PCR (mean * s.e.m., n =3 mice). Statistical analysis by one-way ANOVA.

h, Mouse BM-derived M¢s were treated with TEMPO or DMTU, followed by
FLASH or standard radiation. Cell lysates were subjected to oxLDL analysis

(mean *s.e.m., n =3 mice). Statistical analysis by one-way ANOVA.

To validate the expression of this target, we performed immunofluo-
rescence and flow cytometry analyses of the tumors derived from
our genetically engineered MB model. Tissue immunofluorescence
analysis of mouse normal brain and MB tumors verified that GD2 was
specifically and robustly expressed in MB tumors (Fig. 5a), which
was further validated by flow cytometry analysis showing more than
60% of tumor-derived cells were GD2" (Fig. 5b), suggesting that GD2
is avital and selective therapeutic target for MB. In addition, using a
retrovirus-mediated murine CAR-T system we previously developed®*,
we generated murine GD2 CAR-T cells with >40% CAR' T cells (Fig. 5¢).
Aninvitrokilling assay with tumor cellsindicated that these CAR-T cells
could directly induce cytotoxicity in GD2" mouse brain tumor cells
invitro (Fig. 5d). We investigated the effects of GD2 CAR-T cell mono-
therapy on animal survival in MB-bearing mice. MB was genetically
induced in mice, followed by treatment with GD2 CAR-T cells injected
intravenously (Fig. 5e). Unexpectedly, GD2 CAR-T cell therapy did not

improve animal survival (Fig. 5f), likely because of no detectable tumor
infiltration by CAR-T cells after infusion (Fig. 5g).

Totestthe effects of FLASHRT on CAR-T cellinfiltration and animal
survival, MB-bearing mice were treated by standard and FLASHRT, fol-
lowed by T cell therapy with GD2 CAR or control single-chain variable
fragment (scFV)-free CAR-T cells 5 days after the irradiation (Fig. 6a).
Our datashowed that combination treatment with FLASHRT plus GD2
CAR-T cells substantially extended animal survival (+27.5 days median,
P<0.001,compared to FLASH RT plus control CAR-T cells), while com-
bination treatment with standard RT plus GD2 CAR-T cells moderately
extended animal survival (+11.0 days median, P < 0.001, compared to
standard RT plus control CAR-T cells) (Fig. 6b). Of note, 70% of the mice
thatreceived FLASHRT plus GD2 CAR-T combination therapy remained
alive, whereas all mice in other groups died 83 days after tumorinduc-
tion (Fig. 6b). In addition, we tested the effects of the combination
therapy in a syngeneic glioma mouse model (Extended Data Fig. 6a).
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Fig. 5/ GD2 CAR-T cells show robust activity in vitro but minimal therapeutic
efficacy in vivo. a,b, Normal brain and tumor tissues were excised from WT and
SmoM2 mice. a, Tissue sections were immunostained with anti-GD2 antibody
(n=4mice). Representative images are shown. Scale bars, 50 pm. b, Tissue-
derived single-cell suspensions were immunostained and analyzed by flow
cytometry. Left, representative sortings. Right, quantified results (n = 3 mice,
mean +s.e.m.). Statistical analysis by two-tailed Student’s t-test. c-g, GD2 CAR-T
therapy in mice. ¢, Preparation of CAR-T cells. Mouse T cells were retrovirally
transduced to express control or GD2 CAR. Representative sortings are shown,

d, Mouse tumor cells were isolated from MB tumors and incubated with

control or GD2 mouse CAR-T cells, followed by cell lysis assay (n = 6 assays,
mean + s.e.m.). Statistical analysis by two-way ANOVA. e-g, SmoM2 mice were
treated with or without control or GD2 CAR-T cells. e, Experimental procedures.
f, Animal survival was monitored. Statistical analysis by log-rank test. g, Mice
were imaged by bioluminescence. Left, representative images. Dashed circles
indicate the brain area. Right, quantified luminescence signals in the brain area
(n=4mice, mean + s.e.m.). Statistical analysis by one-way ANOVA.

Our datashowed that FLASH RT monotherapy aloneinduced arobust
therapeutic effect (+29.5 days median, P < 0.0001, compared to control
nonirradiated mice), while standard RT therapy induced a moderate
effect (+10.5 days median, P < 0.01, compared to control nonirradi-
ated mice) (Extended Data Fig. 6b). Strikingly, combination of FLASH
RT with GD2 CAR-T cell therapy markedly improved animal survival,

with 80% of the mice remaining alive when experiments reached the
endpointonday 60 (Extended Data Fig. 6b). The combination therapy
also substantially inhibited tumor growth (Extended DataFig. 6¢).
We determined the effects of FLASH RT on CAR-T cell infiltration
and function in vivo. Whole-body bioluminescence imaging showed
that FLASH RT but not standard RT robustly improved the homing of
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these nanoluciferase (nLuc)-expressing CAR-T cells to the MB tumors
(Fig. 6¢), likely contributing to the survival benefits in the group of
mice that received FLASH RT plus GD2 CAR-T combination therapy.
Furthermore, our flow cytometry analysis of the MB tumors excised
3 days after CAR-T cell therapy showed that FLASH RT and standard
RT stimulated the infiltration of total hematopoietic cells into the
tumor atasimilar level (Fig. 6d); however, FLASHRT but not standard
RT markedly enhanced CAR-T cellinfiltration (Fig. 6e). Moreover, com-
pared tostandard RT, FLASH RT more robustly stimulated expression
of interferon-y (IFNy), amajor T cell cytotoxic cytokine, and induced
less reduction of expression of Ki67, a proliferative marker, in the
infiltrated CAR-T cells (Fig. 6f). Furthermore, FLASH RT did not affect
expression of programmed cell death protein 1 (PD1) and Tim3, two
T cell exhaustion-associated markers, in the infiltrated CAR-T cells
(Fig. 6g). In addition, we analyzed the tumors excised 7 days after
CAR-T cell therapy (Extended Data Fig. 7a). Similarly, our data showed
enhanced CAR-T infiltration by FLASH RT but not by standard RT at
that time (Extended Data Fig. 7b). Moreover, FLASH RT rather than
standard RT stimulated IFNy expression in the CAR-T cells (Extended
Data Fig. 7c, left). Both FLASH RT and standard RT inhibited PD1 and
Tim3 expressionin the CAR-T cells (Extended Data Fig. 7c, right), sug-
gesting a time-dependent effect of combination therapy on T cell
functions. Inaparallel study, we tested a different therapeutic window
for the RT and CAR-T cell combination therapy, in which mice were
treated with GD2 CAR-T cells 3 days after the irradiation, followed by
tumor analysis 6 days later (Extended Data Fig. 7d). Our data showed
that FLASH RT but not standard RT consistently stimulated CAR-T cell
infiltration (Extended Data Fig. 7e). Neither FLASH RT nor standard
RT affected granzyme B (GranzB) or Ki67 expressionin the CAR-T cells
but FLASH RT stimulated more IFNy expressionin the CAR-T cells than
standard RT (Extended Data Fig. 7f). Furthermore, neither FLASH RT
nor standard RT affected PD1 expression but standard RT rather than
FLASHRT increased Tim3 expression (Extended DataFig. 7g). Together,
these findings suggest that FLASH RT improves CAR-T cellinfiltration,
stimulates more favorable T cell functions and overcomes tumor resist-
ance to GD2 CAR-T cellimmunotherapy.

In summary, our work shows that FLASH radiation stimulates
proinflammatory Mi-like polarization of tumor M¢sin vitroandin vivo
and enhances infiltration of endogenous T cells orinfused CAR-T cells
into MB tumors. We reveal a redox-mediated and PPARy-mediated
mechanism by which FLASH RT may reprogram M¢s to overcome
tumor resistance to T cell-based immunotherapy (Fig. 6h).

Discussion
FLASH RT, albeit initially proposed in the 1960s***, is an innovative
treatment approach given recent discoveries showing promise in the
treatment of solid tumors because of its potential for reduced toxicity in
normal tissues** 2%, However, its therapeutic effects on tumor immunity,
particularly on M@ functions, remainlargely unclear. Here, we report that
FLASH RT modulates lipid metabolism to reprogram tumor-associated
Mas toward proinflammatory polarization and reduces M¢-mediated
tumorimmunosuppression, empowering CAR-T cellinfiltration into the
tumors and sensitizing autochthonous MB to CAR-T cellimmunotherapy.
Because we used a primary mouse model of cancer that coevolves with
theimmune system, we investigated theimpact of FLASHRT inanative
tumorimmune microenvironment, whichis not subjectto theinfluence
oftumor cell transplantation that alters the response to the combination
of RT andimmunotherapy*’. Consistentwith our findings, arecentreport
showed that FLASH RT increases antitumor M¢s and reduce protumor
Mds in lung cancer*. FLASHRT is, therefore, a promising combination
partner for cancerimmunotherapy, particularly in the context of primary
braintumors, consideringits additional benefits of reduced neurocog-
nitive side effects®*.

Ourworkreveals that FLASH and standard RT induces PPARy inacti-
vationand activation, respectively. A critical and requisite role hasbeen

wellestablished for PPARy in M2 polarization of tumor M¢ps®***. PPARy is
aligand-activated TF thatis essential for the regulation of metabolism,
inflammation, proliferation and differentiation and canbe activated by
naturally occurring ligands (for example, polyunsaturated fatty acids)
and pharmacologically synthesized agents (for example, rosiglita-
zone)*. Our initial study showed that ROS scavenger TEMPO inhibits
PPARYy activity and arginase 1 expressioninstandard RT-irradiated M¢s,
indicating that standard RT-evoked PPARYy activation depends on redox
stress. Furthermore, we found that FLASHRT decreases oxLDL produc-
tionwhilestandard RT increases it, implying that FLASH RT may disrupt
oxLDL formation to reduce PPARy-mediated M¢ immunosuppression.
Supportingthis hypothesis, 9-HODE and 13-HODE, two major oxidized
lipid components of oxLDL, can directly bind and activate PPARy*™";
astructural study validated the interaction of PPARy with oxidized
fatty acids, including 4-HDHA, 5-HEPA and 6-HOTE, leading to greater
activation of PPARy than unoxidized forms®. However, as an estab-
lished marker for cardiovascular disease, the circulating oxLDL, which
isfavored by polyunsaturated fatty acids rather than monounsaturated
fatty acids®, stimulates proinflammatory responses by binding to its
cellularsurface receptors, suggesting that oxLDL and PPARy may have
different rolesin cancer and cardiovascular diseases.

Fatty acid oxidation can proceed through either lipid oxidases
or ROS-mediated direct reaction. Strikingly, our study showed that
FLASH RT reduces production of oxLDL, which consists of oxidated
cholesterol, fatty acid and protein components, likely acting primar-
ily through downregulation of oxidases including Alox12 and MPO, as
FLASH does not robustly stimulate ROS generation in M¢s. Despite
inducing similar downregulation of these oxidases, standard RT does
notdecrease oxLDL production, possibly because of robustly induced
ROS. The precise mechanism underlying the oxidase downregulation
remains obscure but may be related to anadaptive gene transcription
response after RT-induced mitochondrial damage and subsequent
lipid metabolism dysfunction. Inaccordance with our findings showing
that FLASH RT does not robustly stimulate ROS production, growing
evidence suggests that FLASHRT generates fewer ROS in various cells
thanstandard RT**%, The potential mechanisms may involve different
responses in oxygen depletion®”*~' or in potential mitochondrial dys-
functioninduced by FLASH and standard RT. In addition, considering
that activated M¢s produce ROS to combat foreign substances, M¢ps
can generally tolerate a higher level of ROS to maintain redox hemo-
stasis, likely because of the possibility that M¢s may possess agreater
reserve capacity for the enzymatic reduction of ROS and can, therefore,
remove them more rapidly, potentially contributing to the minimal
effects of FLASH RT onintracellular ROS level in Ms.

T cell-based immunotherapiesincluding checkpointinhibitionand
adoptive cell transfer with CAR-modified T cells currently show efficacy
inaminority of persons with solid tumors. Thisisin part because of an
immune-hostile microenvironment thatlimits T cellinfiltrationintoand
activationin the tumor. In particular,immunologically cold tumorssuch
asthe majority of primary braintumors are characterized by very few or
noinfiltrating T cells*. Improving T cell recruitment into the tumorsis,
therefore, critically needed to enhance the success ofimmunotherapy.
Our study shows that FLASH RT enhances GD2 CAR-T cell infiltration
into MB tumors, likely because of the reversal of PPARy-mediated M
immunosuppression. Inaddition, this canbe attributed to the potential
reduction of TGFf3, aknownimmunosuppressive cytokine, considering
that FLASHRT induces less TGF expression in normal tissue”?*>%3, Dis-
ialoganglioside GD2 is commonly overexpressed in pediatricand adult
solid tumors, such as MB, neuroblastoma and glioma******, Anti-GD2
monoclonal antibodies including naxitamab and dinutuximab repre-
sent the standard of care for persons with high-risk neuroblastoma.
GD2 CAR-T therapy shows robust efficacy in mouse xenograft models
with humanMB tumors** but exhibits amoderate therapeutic response
in glioma and its efficacy is restricted by the immunosuppressive
microenvironment>->°. M¢s are a major cell population in primary
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brain tumors, serving as a key source of tumor immunosuppression
and causing resistance toimmunotherapy’ . We show that FLASH RT
overcomes tumor resistance to GD2 CAR-T cell therapy, likely because
of inhibited M¢p-mediated immunosuppression and reduced arginase
1release from Ms. Itis tempting to speculate that FLASH RT may spare
tumor vasculatureto allow T cell delivery into the tumor given growing
evidence that FLASHRT hasaless toxic effect onblood vesselsin normal
tissues than standard RT>**%; however, the specific effects of FLASHRT
on tumor vasculature remain to be investigated.

Insum, our study reveals an ROS-driven and oxidase-driven mecha-
nism that contributes to FLASH RT-induced proinflammatory polari-
zation through oxLDL and PPARYy, providing molecular insight into
FLASH RT-modulated tumor immunity. Thus, combined FLASH-CAR-T
radioimmunotherapy may offer exciting opportunities for treating
pediatric brain tumors and possibly other malignant solid tumors.

Methods

Ethics statement

Research conducted in this manuscript complies with all relevant
ethical regulations at the University of Pennsylvania. All experiments
with mice were conducted inaccordance with protocols (805096 and
806643) approved by the Institutional Animal Care and Use Committee
atthe University of Pennsylvania. University of Pennsylvania guidelines
for the proper and humane use of animals in biomedical research were
followed. The protocol for human monocyte and T cell collection
was reviewed and approved by the Institutional Review Board of the
University of Pennsylvania, with each participant providing written
informed consent.

CAR-T cells

Spleen-derived T cells were isolated from C57/B6 mice (2 months old,
halfmale and half female, Jackson laboratory) by mechanical dissocia-
tionusing a gentleMACS dissociator (Miltenyi Biotech), followed by fil-
tration throughasterile 70-pm strainer (NETA, 410-0002-OEM). T cells
were isolated using an EasySep mouse T cell isolation kit (StemCell,
19851). T cells were cultured in Iscove’s modified Dulbecco’s medium
with 10% FBS. T cells were treated with anti-CD3¢ and anti-CD28 anti-
bodies (1 pg ml™; BioLegend, 100302 and 102102) and recombinant
IL-2 (100 1U per ml, Peprotech, 212-12) for 2 days. Before retrovirus
transduction, non-tissue-treated 6-well or 12-well plates were treated
with retronectin (20 pg ml™ in PBS; Takara, TIOOA) at 4 °C overnight.
Retrovirus expressing GFP-nLuc, mouse GD2 CAR or control scFV-free
CAR sequence was prepared in Phoenix cells cotransfected with a
pCL-Eco helper plasmid using Lipofectamine 2000 (Life Technologies,
11668-019)*". Cells were immunostained with biotinylated protein L
(Life Technologies, 29997) to analyze CAR expression using an FACS-
Canto Il flow cytometer (BD Biosciences). The flow cytometry datawere
analyzed using FlowJo (version 10.8.1) software. A CAR-T cell-killing
assay was performed®°.

Animal model and treatment

Genetically engineered MB was induced in mice®®*, In brief, Math1-
Cre;SmoM2"" (Rosa-LSL-Smo"**“Y**) mice were generated by breeding
SmoM2"" mice with MathI-Cre mice, both on a C57/B6 background.
The genotype was validated by PCR analysis of genomic DNA using
the following primers: Mathl-Cre forward, 5’-CCGGCAGAGTTTAC
AGAAGC-3’; Mathl1-Cre reverse, 5’-ATGTTTAGCTGGCCCAAATG-3’;
SmoM2"T™ildtPe forward, 5-CTGGCTTCTGAGGACCG-3’; SmoM2WT
reverse, 5’-AGCCTGCCCAGAAGACTCC-3’; SmoM2™“" forward,
5-TCCCCATCAAGATCCATTTC-3’; SmoM2™"" reverse, 5’-CTGAAC
TTGTGGCCGTTTAC-3’. Mice (2 months old, half male and half female,
Jackson laboratory) were administrated with CAR-T cells (5 x 10°
cells per mouse) through the tail vein. For T cell imaging, mice were
infused with mouse T cells coexpressing GD2 CAR or control CAR
with tdTomato-nLuc (3 x 10° cells per mouse) through the tail vein.

After retro-orbitalinjection of coelenterazine (10 mg kg™; Furimazine),
mice were imaged. For induction of glioma in mice, 3 x 10° mouse
fLuc-expressing GL261glioma cells (PerkinElmer,134246) were ortho-
topically injected into the brains of WT C57BL/6 mice (6-8 weeks old,
half male and half female). Survival after injection was monitored
for up to 180 and 60 days for MB and glioma, respectively. Mice were
injected with luciferin (150 mg kg™; GoldBio), followed by whole-body
bioluminescence analysis using an IVIS 200 Spectrum imaging sys-
tem to monitor tumor growth. When exhibiting severe glioblastoma
symptomsincluding hemiparesis, dome head or more than20% body
weightloss, tumor-bearing mice were killed. Mice were randomized to
receive treatment and the investigators were not blinded. All animals
used inthis study were housed in the animal facility accredited by the
Association for the Assessment and Accreditation of Laboratory Animal
Care at the University of Pennsylvania.

StereotacticRT

Acyclotron-generated 230-MeV proton beam (IBA) was directed hori-
zontally through scattered and collimated system for irradiation®.
The EBT3 film (Ashland Advanced Materials) was used to check the
dose uniformity and alignment. The juvenile mice cerebellum region
was aligned with a circular field of 8 mmin diameter and subjected to
radiation at the proton beam entrance region. For the dosimetry of
such asmallfield, aFaraday cup was used to capture the proton fluence
cross-calibrated with the dose under alarge uniform field with an EBT3
filmand areference Advanced Markus ion chamber (PTW Freiburg)®®.
The double-scattering and collimation apparatus was dosimetrically
verified with dose rates®>”. The dose rate was derived from the meas-
ured dose and theirradiation duration captured from an oscilloscope
(Tektronix). The proton beam can be delivered at drastically different
beam current, resulting in a standard dose rate of 0.7-0.9 Gy s or a
FLASH ultrahigh dose rate of 97-143 Gy s . The cellswere also subjected
toradiation withinthe beam’s entrance (plateau) region withacircular
field of 26-mm diameter using two distinct modalities: FLASH and
standard. The FLASH modality exhibited a dose rate spanning approxi-
mately 80 to135 Gy s, while the conventional standard modality oper-
ated within the range of 0.60 to 0.85 Gy s’. These variable dose rates
were attained by manipulating the cyclotron current, which ranged
from360 nAto2 nAfor FLASH and conventional standard modalities,
respectively. Mice were irradiated with the entrance (plateau) region
of the beam with afield size of an 8-mm-diameter circular collimator
atthe hind brains. Cells cultured inthe plates wereirradiated. The total
doses used were 10 Gy for mice and 5 Gy for cells.

Single-cell RNAseq

Treated Mathl-Cre;SmoM2"" mice bearing MB tumors were killed and
perfused with PBS containing EDTA. Tumor tissue was excised, followed
by digestion with collagenase Il (5 mg mlI™; Invitrogen, 17101-015) and
DNase (1 mg ml™; Sigma-Aldrich, D4527). Asingle-cell suspension was
harvested after filtering using amesh strainer with 70-um pores (NETA,
410-0002-OEM). Cell samples were pooled from three mouse tumors
foreachgroup and were prepared and analyzed according to the manu-
facturer’s V3 library protocol (10x Genomics), followed by single-cell
RNAseq analysis at the Center for Applied Genomics of the Children’s
Hospital of Philadelphia. Reads were aligned using CellRanger (10x
Genomics, version 6.1.2) against a mouse reference library (mouse
genome assembly GRCm38/mm10). The gene expression matrices that
passed default quality control metrics were integrated and analyzed by
SeuratR package (version 4.0.6) using sctransform (version 2)°*%°, The
downstream analysis was then conducted using Seurat®®.

Bulk RNAseq analysis

Treated mouse bone marrow-derived Mds were lysed using TRIzol
(Thermo Fisher Scientific) and RNA wasisolated according to the manu-
facturer’sinstructions. RNA was purified using an RNeasy Plus mini kit
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(QIAGEN).DNAlibrary was prepared witha TruSeq mRNA stranded kit
(Ilumina). The quality of prepared RNA and library DNA was analyzed
with RNA Nano assay chips, RNA Pico assay chips and DNA Nano assay
chips using a 2100 Bioanalyzer (Agilent). The library was subject to
next-generation sequencing analysis with a NovaSeq at Azenta Life
Sciences. The sequences were aligned to the mouse genome assembly
GRCm38/mm10 using Kallisto (version 0.46.0). The gene expression
was normalized and calculated as counts per million values by R pack-
ages tximport (version 1.30.0) and EdgeR (version 3.14.0).

Mouse and human M¢ isolation and treatment

Mouse bone marrow-derived M¢s were isolated*-’. Freshly isolated
femur and tibia bones from C57BL/6 mice (6-8 weeks old, halfmale and
half female) were flushed with RPMI-1640 culture medium (Life Tech-
nologies). Cells were harvested and passed through a40-pm strainer.
ACK ysis buffer (ThermoFisher Scientific) was used to deplete red cells.
Bone marrow cells were cultured in RPMI-1640 medium containing
5% FBS (Life Technologies). Cells were treated with 10 ng mI™ mouse
colony-stimulating factor 1 (CSF1; PeproTech, 315-02) for 7 days to
induce M¢@ differentiation, followed by treatment with 100 ng mI ™ LPS
(Sigma-Aldrich, LPS25) or 20 ng mIIL-4 (BioLegend, 574302) for 2 days
with or without pretreatment with1 mM TEMPO (Targetmol, T5363) or
DMTU (Targetmol, T40615). Human PBMC-derived monocytes were
isolated from the healthy volunteers, aged 16-64, and provided by the
HumanImmunology Core of the University of Pennsylvania. The mono-
cytes were treated with human CSF1 (10 ng ml™; BioLegend, 574806)
in RPMI-1640 medium for 5 days to induce differentiation into M¢s,
followed by treatment with LPS (100 ng ml™; Sigma-Aldrich, LPS25) or
humanIL-4 (20 ng ml™; Peprotech, 200-04). The treated M¢s were also
cocultured with human T cells (isolated from healthy volunteers and
provided by Human Immunology Core of the University of Pennsylva-
nia). For CFSE staining in T cells, 5 10 T cells per ml were incubated
with 5 uM CFSE (BioLegend, 423801) for 20 min at 37 °C. The staining
was quenched and the treated cells were analyzed.

Flow cytometry

Mouse tumor-derived single-cell suspensions, mouse bone marrow-
derived M¢ps and human PBMC-derived Mgs and were immunostained
with fluorescent dye-conjugated antibodies to CD3 (1:100; BioLeg-
end,100203/100233), CD4 (1:100; BioLegend, 100540), CD8a (1:100;
BioLegend, 100706/100708/100733), CD45 (1:100; BioLegend,
103133/103134), F4/80 (1:100; BioLegend, 123107), CD206 (1:100;
BioLegend, 141719), CD8O0 (1:100; BioLegend, 104713, 375403), CD86
(1:100; BioLegend, 105005;1:100, Miltenyi Biotec,130-102-604), IFNy
(1:100; BioLegend, 505825), GranzB (1:100; BioLegend, 372211), Ki67
(1:100; Thermo Fisher Scientific, 17-5698-80), LAG3 (1:100; eBiosci-
ence, 11-2231-80; BioLegend, 125225/125209), PD1 (1:100; BioLegend,
135223), Tim3 (1:100; BioLegend, 134009), CD11b (1:100; BioLegend,
101206/101212), CD206 (1:100; BioLegend, 321109), NK1.1 (1:100; Bio-
Legend, 156505), TMEM119 (1:100; Thermo Fisher Scientific, 25-6119-
80),CD25(1:100; BioLegend, 101915/302610), GD2 (1:100; BioLegend,
357324) or control IgG”. For intracellular staining, cells were treated
with TF staining buffer (Thermo Fisher Scientific, 00-5523-00). Cells
were analyzed using an FACSCanto Il flow cytometer (BD Biosciences)
and FlowJo software (version10.8.1).

Real-time RT-PCR analysis

RNAwasextracted from mouse M¢s using the RNeasy Plus minikit (QIA-
GEN, 74136) according to the manufacturer’s instructions. Real-time
RT-PCR was conducted using the Superscript I first-strand synthesis
system (Thermo Fisher Scientific,12574026) and the powerSYBR Green
PCR master mix (Applied Biosystems, 4367659), followed by analysis
aQuantStudio 6 Flex system (Applied Biosystems). The primers used
were as follows: Argl forward, 5-CTCCAAGCCAAAGTCCTTAGAG-%,
Argl reverse, 5-AGGAGCTGTCATTAGGGACATC-3’, IL-1p3 forward,

5’-GCAACTGTTCCTGAACTCAACT-%, IL-1B reverse, 5-ATCTTTTGGG
GTCCGTCAACT-3',Mpo forward, 5-AGTTGTGCTGAGCTGTATGGA-3’;
MPOreverse, 5-CGGCTGCTTGAAGTAAAACAGG-3'.

Detection of ROS

Treated mouse bone marrow-derived M¢s were stained and analyzed
for detection of total ROS using a Cellular ROS detection assay kit
(Abcam, ab113851) following the manufacturer’s instructions. Fluo-
rescence intensity was detected using an FACSCanto Il flow cytometer
(BD Biosciences).

ELISA

Treated mouse bone marrow-derived M¢s and human PBMC-derived
Maos were subjected to ELISA. Total protein concentration was meas-
ured using aprotein assay kit (Bio-Rad, 5000006). For detecting mouse
and human PPARYy activity, cells were analyzed using PPARy ELISA kits
following the manufacturer’s instructions (Biorbyt, orb775497 and
Elabscience, E-EL-H1361, respectively). For measuring oxLDL level,
cellswere analyzed using amouse oxLDL kit (Biorbyt, orb782036) and
humanoxLDLkit (Elabscience, E-EL-H6021). For analysis of mouse TNF
and IL-1B, cell lysis was analyzed using a mouse TNF ELISA Kit (Protein-
tech, KE10002) and a mouse IL-1p ELISA kit (Proteintech, KEI0003).
Absorbance at 450 nm was detected with a Synergy H4 Hybrid micro-
plate reader (BioTek). The PPARYy activity and oxLDL level were cal-
culated depending on the standard curve and normalized with total
protein concentration.

TF activation array

Mouse BM-derived M¢s were irradiated at 5 Gy, followed by TF activ-
ity analysis with a TF activation profiling array (Signosis, FA-1102). In
brief, cellswere washed and lysed. The lysates were incubated with TF
probe mix in TF-binding buffer. The assembly of TF-DNA complexes
was isolated using an isolation column, followed by probe hybridiza-
tionina96-well plate coated with probe sequences at42 °C overnight.
The signal of streptavidin-HRP (horseradish peroxidase) conjugates
were measured using a Synergy H4 Hybrid microplatereader (BioTek).

Immunoblot

For cell sample preparation, cells were lysed with an NP-40 lysis
buffer with a protease inhibitor cocktail (Roche, 11697498001). Total
protein (20 pg) was resolved by 4-20% precast SDS-PAGE (Bio-Rad,
456-1094), followed by transfer. PVDF membranes were blotted
with anti-arginase 1 antibody (1:500; Santa Cruz, sc-20150) and
anti-glyceraldehyde-3-phosphate dehydrogenase antibody (1:3,000;
Cell Signaling, 5174) at 4 °C overnight. Proteins were detected with
HRP-conjugated secondary antibodies (Bio-Rad) and the bands were
imaged by enhanced chemiluminescence development (GE Healthcare,
RPN2232) using a Chemidoc Imager (Bio-Rad).

Immunofluorescence

Mouse tumor sections were subject to deparaffinization and rehydra-
tion and incubated with antigen retrieval solution (DAKO, S1699) for
20 min at 95 °C. Tissue sections were blocked with PBS containing
5% horse serum for 1 h and incubated with anti-GD2 antibody (1:200,
BioLegend, 357302) at 4 °C overnight. After washing with PBS, sec-
tions were stained with Alexa Fluor 488-conjugated IgGs (1:500, Life
Technologies) for1 hatroom temperature. Images were acquired using
an Axio Imager microscope (Zeiss) equipped with an AxioCam 506
monochrome charge-coupled device camera (Zeiss).

Statistics and reproducibility

All statistical tests were performed using Prism software (GraphPad,
version10.0). All statistical tests were two-sided. An unpaired Student’s
t-test was used to measure differences between the two groups. For
multiple-group comparisons, one-way or two-way analysis of variance
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(ANOVA) was used to determine statistically significant differences
between groups. Kaplan-Meier analysis with a log-rank test was per-
formed for survival analysis. A Pvalue lower than 0.05 was considered
significant. The exact P value is shown in each figure. No statistical
methodswere used to predetermine sample sizes but we used adequate
numbers of samples that would provide statistically significant results
onthebasis of our previous experience. The exact sample sizes are indi-
catedinthefiguresor figure legends. To ensure the reproducibility of
ourresults, all experiments were conducted with adequate replicates.
Allinvivo experiments were randomized to each experimental cohort.
Theinvestigators were not blinded to allocation during experiments or
outcome assessments. Data distribution was assumed to be normal but
this was not formally tested. No data were excluded from the analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Single-cell and bulk RNAseq data were deposited to the National
Center for Biotechnology Information’s Gene Expression Omnibus
under accession numbers GSE246970 and GSE246969, respectively.
Allremaining dataare available within the article and the Supplemen-
tary Information or available from the authors upon request. Source
data are provided with this paper.
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Extended Data Fig. 1| Effects of RT on tumor-associated Mfs, microglia, and (n=5mice), c, CD45"*CD11b*TMEMI119" total microglia (n =12 mice for no RT
NK cells. Medulloblastoma was genetically engineered in SmoM2 mice, followed group, and n =11 mice for FLASH and standard RT groups), d, CD86"* M1-like (n
by irradiation with FLASH or standard proton beam. Tumors were excised and =5mice) and CD206* M2-like microglia (n = 6 mice), and e, NK1.1' NK cells (n=6
subjected to flow cytometry analysis. a, Gating strategies for analysis of T cells mice). Statistical analysis by one-way ANOVA (mean + SEM).

and Mgs, corresponding to Fig. 1i-o. b-e, Analysis for b, CD11b"F4/80" total M¢s
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Extended Data Fig. 2 | Effects of RT on human Mfpolarizationin vitro. Human
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followed by treatment with LPS or IL-4. a, Experimental procedure. b,c, After
treatment with b, LPS or ¢, IL-4, cells were analyzed by flow cytometry. Left,

representative cell sortings. Right, quantified results (n=3 human participants,
mean + SEM). b, Statistical analysis by two-tailed Student’s t test. ¢, Statistical
analysis by one-way ANOVA.
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Extended DataFig. 3 | Effects of irradiated Mfs on T cell functions in vitro.
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by one-way ANOVA. b, CD25 expression was analyzed in CD3" T cells. Left,
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mean + SEM). Statistical analysis by one-way ANOVA.
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anti-CD80 (1:100, BioLegend, 104713, Clone 16-10A1) for flow cytometry
anti-CD86 (1:100, Biolegend, 105005, Clone GL-1) for flow cytometry
anti-CD86 (1:100, Miltenyi Biotec, 130-102-604, Clone:P03.3) for flow cytometry
anti-IFN-g (1:100, Biolegend, 505825, Clone XMG1.2) for flow cytometry
anti-Granzyme B (1:100, Biolegend, 372211, Clone QA16A02) for flow cytometry
anti-Ki67 (1:100, Thermo Fisher, 17-5698-80, Clone SolA15) for flow cytometry
anti-LAG3 (1:100, eBioscience, 11-2231-80, Clone C9B7W) for flow cytometry
anti-LAG3 (1:100, Biolegend, 125225/125209, Clone C9B7W) for flow cytometry
anti-PD-1 (1:100, Biolegend, 135223, Clone 29F.1A12) for flow cytometry
anti-Tim-3 (1:100, Biolegend, 134009, Clone B8.2C12) for flow cytometry
anti-CD11b (1:100, Biolegend, 101206/101212, Clone M1/70) for flow cytometry
anti-CD206 (1:100, Biolegend, 321109, Clone 15-2) for flow cytometry
anti-NK-1.1 (1:100, Biolegend, 156505, Clone $17016D) for flow cytometry
anti-TMEM119 (1:100, Thomas Fisher, 25-6119-80, Clone V3RT1GOsz) for flow cytometry
anti-CD25 (1:100, Biolegend, 101915, Clone 3C7) for flow cytometry
anti-CD25 Antibody (1:100, Biolegend, 302610, clone: BC96) for flow cytometry
anti-GD2 (1:100, Biolgend, 357324, Clone 14G2a) for flow cytometry
anti-arginase-1 (1:500, Santa Cruz, sc-20150, Clone H-52) for immunoblot
anti-GAPDH (1:3,000, Cell Signaling, 5174, Clone D16H11) for immunoblot
anti-GD2 (1:200, BioLegend, 357302, Clone 14G2a) for immunofluorescence

Validation All antibodies were purchased from commercial sources and have been validated by the vendors. Additional validation has also been
given in previous publication with PubMed IDs listed:
anti-CD3e (BioLegend, 100302) PMID: 32901001, 34822775, 36630913 https://www.biolegend.com/nl-be/products/purified-anti-
mouse-cd3epsilon-antibody-28
anti-CD28 (BiolLegend, 102102) PMID: 32901001, 33893298, 32434937 https://www.biolegend.com/nl-be/products/purified-anti-
mouse-cd28-antibody-117
anti-CD3 (BioLegend,100203) PMID: 28560793, 29456159,30393066, 8293463, 2197981 https://www.biolegend.com/nl-be/
products/fitc-anti-mouse-cd3-antibody-45
anti-CD4 (BioLegend, 100540) PMID: 29429633, 30446387, 30076101 https://www.biolegend.com/nl-be/products/percp-
cyanine5-5-anti-mouse-cd4-antibody-4230
anti-CD8a (BioLegend, 100706/100733) PMID: 29129787, 29363160, 29777108 https://www.biolegend.com/nl-be/products/fitc-
anti-mouse-cd8a-antibody-153
anti-CD45 (1:200, BioLegend, 103134/103133) PMID: 30796225, 28008921, 35046097 https://www.biolegend.com/nl-be/products/
brilliant-violet-421-anti-mouse-cd45-antibody-7253
anti-F4/80 (BiolLegend, 123107) PMID: 28939843, 29664018, 29070674  https://www.biolegend.com/nl-be/products/fitc-anti-
mouse-f4-80-antibody-4067
anti-CD206 (1:100, Biolegend, 141719) PMID: 33278339, 35105806, 33571109 https://www.biolegend.com/nl-be/products/pe-
cyanine7-anti-mouse-cd206-mmr-antibody-8631
anti-CD80 (1:100, BioLegend, 104713) PMID: 30595553, 30650377, 22308386 https://www.biolegend.com/nl-be/products/apc-anti-
mouse-cd80-antibody-2340
anti-CD86 (1:100, Biolegend, 105005) PMID: 33535045, 26644347, 26880763 https://www.biolegend.com/nl-be/products/fitc-anti-
mouse-cd86-antibody-254
anti-CD86 (1:100, Miltenyi Biotec, 130-102-604) PMID: 16709832, 15456701 https://www.miltenyibiotec.com/US-en/products/
cd86-antibody-anti-mouse-po3-3.html#conjugate=pe:size=30-ug-in-200-ul
anti-IFN-y (Biolegend, 505825) PMID: 33271118, 30005826, 33711270 https://www.biolegend.com/nl-be/products/pe-cyanine7-
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anti-mouse-ifn-gamma-antibody-5865

anti-Granzyme B (1:100, Biolegend, 372211) PMID: 32195350, 36280674, 36054938 https://www.biolegend.com/nl-be/products/
percp-cyanine5-5-anti-humanmouse-granzyme-b-recombinant-antibody-15597

anti-Ki67 (1:100, Thermo Fisher, 17-5698-80) PMID: 35045305, 35241842, 36417858 https://www.thermofisher.com/antibody/
product/Ki-67-Antibody-clone-SolA15-Monoclonal/17-5698-80

anti-LAG3 (1:100, eBioscience, 11-2231-80) PMID: 36731891, 35915084, 34446716 https://www.thermofisher.com/antibody/
product/CD223-LAG-3-Antibody-clone-eBioC9B7W-C9B7W-Monoclonal/11-2231-82

anti-LAG3 (1:100, Biolegend, 125225/125209) PMID: 30580966, 31031094, 33838102 https://www.biolegend.com/nl-be/products/
pe-cyanine7-anti-mouse-cd223-lag-3-antibody-14782

anti-PD-1 (1:100, Biolegend, 135223) PMID: 31350404, 32619407, 29958801 https://www.biolegend.com/nl-be/products/apc-
cyanine7-anti-mouse-cd279-pd-1-antibody-9742

anti-Tim-3 (1:100, Biolegend, 134009) PMID: 32860752, 34642245, 31722203 https://www.biolegend.com/nl-be/products/pe-
cyanine7-anti-mouse-cd366-tim-3-antibody-13929

anti-CD11b (1:100, Biolegend, 101206/101212) PMID: 31488882, 29777220, 29777220 https://www.biolegend.com/nl-be/products/
fitc-anti-mouse-human-cd11b-antibody-347

anti-CD206 (1:100, Biolegend, 321109) PMID: 32210962, 32210962, 30995475 https://www.biolegend.com/nl-be/products/apc-anti-
human-cd206-mmr-antibody-2996

anti-NK-1.1 (1:100, Biolegend, 156505) PMID: 34852237 https://www.biolegend.com/nl-be/products/apc-anti-mouse-nk-11-
antibody-19843

anti-TMEM119 (1:100, Thomas Fisher, 25-6119-80) PMID: 35705056, 33261619 https://www.thermofisher.com/antibody/product/
Tmem119-Antibody-clone-V3RT1GOsz-Monoclonal/25-6119-80

anti-CD25 (1:100, Biolegend, 101915) PMID: 29894690, 33106640, 35040435 https://www.biolegend.com/nl-be/products/pe-
cyanine7-anti-mouse-cd25-antibody-13235

anti-CD25 Antibody (1:100, Biolegend, 302610) PMID: 35690062, 36261015, 25994968 https://www.biolegend.com/nl-be/products/
apc-anti-human-cd25-antibody-614

anti-GD2 (1:100, Biolgend, 357324) PMID: 22585577, 19339105 https://www.biolegend.com/nl-be/products/apccyanine7-anti-
human-ganglioside-gd2-antibody-19352

anti-arginase-1 (1:500, Santa Cruz, sc-20150) PMID: 18824264, 22972923, 17577033 https://datasheets.scbt.com/sc-20150.pdf
anti-GAPDH (1:3,000, Cell Signaling, 5174) PMID: 38168040, 37935976, 38095297 https://www.cellsignal.com/products/primary-
antibodies/gapdh-d16h11-xp-rabbit-mab/5174

anti-GD2 (1:200, BioLegend, 357302) PMID: 22585577, 19339105 https://www.biolegend.com/nl-be/products/purified-anti-human-
ganglioside-gd2-antibody-8407

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

GL261 cells were from PerkinElmer.

GL261 cells were authenticated by the supplying company. No further authentication was performed.

Mycoplasma contamination All cell lines have been tested and shown negative for mycoplasma contamination.

Commonly misidentified lines  There were no commonly misidentified cell lines used in this study.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals
Reporting on sex
Field-collected samples

Ethics oversight

Math1-Cre;SmoM2fl/fl (Rosa-LSL-SmoW539L/YFP) mice were generated by breeding SmoM2fl/fl mice with Math1-Cre mice. Wild-
type C57/B6 mice were purchased from Jackson Lab. All animals were housed at room temperature with a 12-hour-light/12-hour-
dark cycle in the Association for the Assessment and Accreditation of Laboratory Animal Care-accredited animal facility of the
University of Pennsylvania. Relative humidity and temperature were maintained at 30-70% and 68-79 oF. For glioma tumor induction
experiments, both female and male eight-week-old mice were used.

The study did not involve wild animals.
Half male and half female mice were used.
The study did not involve samples collected from the field.

All experiments with mice were performed in accordance with a protocol approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of Pennsylvania.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A




Plants

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

>
Q
Y
(e
)
1®)
o
=
o
S
_
(D
©
o
=
>
(@}
w
[
3
3
Q
<

Flow Cytometry

Plots

Confirm that:
g The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Tumors were isolated and subjected to mechanical dissociation with a gentleMACS Dissociator (Miltenyi) and enzymatic
digestion with collagenase Il and dispase Il to obtain single cell suspensions. Macrophages were isolated from mouse bone
marrow and human blood, followed by different treatments. Single-cell suspensions were stained with control isotype I1gG or
fluoresence-conjugated antibody, followed by flow cytometry analysis.

Instrument Canto Il (BD Biosciences)

Software FlowJo v10 software

Cell population abundance More than 200 thousand cells were sorted.

Gating strategy All cells were gated. The gating strategy was shown in Extended Data Figure 1.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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